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SUMMARY

A brief derivation of the super compact �nite di�erence method (SCFDM) in non-uniform grid points
is presented. To investigate the accuracy of the SCFDM in non-uniform grid points the Fourier anal-
ysis is performed. The Fourier analysis shows that the grid aspect ratio plays a crucial role in the
accuracy of the SCFDM in a non-uniform grid. It is also found that the accuracy of the higher order
relations of the SCFDM is more sensitive to grid aspect ratio than the lower order relations. In addition,
to obtain a mathematical representation of the accuracy and making clear the role of the aspect ratio in
the accuracy of the SCFDM in non-uniform grids, the modi�ed equation approach is used. For the sake
of demonstrating the analytical results obtained from the Fourier analysis and the modi�ed equation
approach, the super compact �nite di�erence method is applied to solve the Blasius boundary layer
and the non-linear parabolized stability equations as numerical examples indicating the di�culty with
non-uniform grid spacing using the super compact scheme. Copyright ? 2004 John Wiley & Sons, Ltd.

KEY WORDS: super compact scheme; numerical accuracy; non-uniform grid; Fourier analysis; modi-
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1. INTRODUCTION

High-order compact �nite di�erence methods have been the subject of numerous papers in
which they have been successfully applied to the problems in �uid dynamics. Historically these
methods may be traced back to Numerov [1] and Fox and Goodwin’s [2] work. But it was
the suggestion of Kreiss [3] and Hirsh’s paper [4] that made these methods an important tool
for accurate simulation of the �uid dynamic problems. Many classes of the compact schemes
have been derived in recent years. For example, Lele [5] analysed compact �nite di�erence
methods with spectral-like resolutions and also studied the accuracy of these schemes.
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A general class of highly accurate �nite di�erence schemes called super compact �nite
di�erence method (SCFDM) has been introduced by Dexun Fu and Yanwen Ma [6]. The
formulation of this method and its derivation in non-uniform and uniform grids have been
presented in References [6, 7] and Reference [8], respectively. In addition, the application of
the method in uniform grid has been studied in Reference [9].
In many numerical studies of �uid �ow where sever gradients are to be expected i.e. in

boundary layer, non-uniform grids are required to obtain an accurate solution. The objective of
the present work is to investigate the accuracy of the super compact �nite di�erence method
in non-uniform grid points.
To address the issue, Section 2 represents a brief derivation of the SCFDM in non-uniform

grid points. In Section 3, the accuracy of the method is investigated using the Fourier analysis.
The modi�ed equation approach is discussed in Section 4. The solution of the Blasius boundary
layer and non-linear parabolized stability equations using SCFDM in non-uniform grid points
are presented in Sections 5 and 6 as numerical examples. Finally, Section 7 gives the main
conclusions.

2. DERIVATION OF THE SCFDM IN NON-UNIFORM GRID

The SCFDM has two general equations namely, basic equation and auxiliary equations. These
equations are obtained by using the Taylor series. A forward discrete Taylor series for an
arbitrary function, f, in any direction, x, and in a non-uniform grid can be written as:

fj+1 =fj + hjf′
j +

h2j
2!
f′′
j + · · · (1)

where hj= xj+1 − xj. By de�ning a forward operator as
�+x fj=fj+1 − fj

Equation (1) can be rewritten as follows:

�+x fj= hjf
′
j +

h2j
2!
f′′
j + · · · (2)

Using the same procedure a similar equation for backward Taylor series can be obtained,

�−
x fj= hj−1f

′
j − h2j−1

2!
f′′
j + · · · (3)

where �−
x fj=fj − fj−1 and hj−1 = xj − xj−1. The basic equation of the SCFDM is achieved

by adding Equations (2) and (3) as below:

(��+x + ��
−
x )fj =

1
1!
[�+ ��j]f

〈1〉
j +

1
2!
[�− ��2j ]f〈2〉

j + · · ·

+
1
n!
[�+ (−1)n+1��nj ]f〈n〉

j (4)
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where

�j=
hj−1
hj
; f〈k〉

j = hkj

(
@kf
@xk

)
j

in which � and � are free parameters. It can be seen that the basic equation relates function
f to the higher derivatives. In this equation the number of unknowns are much more than
equations thus some additional equations namely, the auxiliary equations are needed to close
the system. The auxiliary equations are obtained similar to the basic equation i.e. for each
derivative of f (e.g. lth derivative) the forward and backward discrete Taylor series are
written and then are added. Then by using the previous de�nitions, auxiliary equations can
be obtained as follows:

�lj+1f
〈l〉
j+1 − 2f〈l〉

j +
1
�lj
f〈l〉
j−1 =

1
1!
(1− �j)f〈l+1〉

j +
1
2!
(1 + �2j )f

〈l+2〉
j

+ · · ·+ 1
(n− l)! (1 + (−1)

n−l�n−lj )f〈n〉
j (5)

Introducing the vectors

F= {f〈1〉; f〈2〉; : : : ; f〈n〉}T; E= {1; 0; : : : ; 0}T

and the matrices

A =
1
2




�+ ��
1!

�− ��2
2!

: : :
�+ (−1)n+1��n

n!

0
1− �
1!

: : :
1 + (−1)n−1�n−1

(n− 1)!

0 0 : : :
1 + (−1)n−2�n−2

(n− 2)!
: : : : : : : : : : : :

0 0 : : :
1− �
1!




L =




0 0 0 0 : : : 0

� 0 0 0 : : : 0

0 �2 0 0 : : : 0

0 0 �3 0 : : : 0

: : : : : : : : : : : : : : : : : :

0 0 0 : : : �n−1 0



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Figure 1. Variations of the modi�ed wave number for the �rst derivative
approximation for the SCFDM with �j =1.
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Figure 2. Variations of the modi�ed wave number for the second derivative
approximation for the SCFDM with �j =1.
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Equations (4) and (5) can be rewritten into a vector form and the following relation is
obtained:

−1
2
L

(
1
�j

)
Fj−1 + (A+ L)Fj − 1

2
L(�j+1)Fj+1 =

1
2
(��+x + ��

−
x )fjE (6)

L and A are N×N matrices, F and E are N dimensional vectors and f〈k〉
j =hkj approximates

@kf=@xk with the accuracy of order N − k + 1. In the case �j=1, the coe�cients in relation
(6) do not depend on the co-ordinate direction and the mesh grid points. At the bound-
aries, forward and backward relations are used. These relations are derived similar to central
relations [8].
By choosing �=�=1, �j=1 and �= − �=1, �j=1 the SCFDM relations for odd and

even derivatives can be obtained in a uniform grid, respectively. For these relations the plots
of the modi�ed wave numbers for the �rst and the second derivatives approximation of the
SCFDM using the Fourier analysis are given in Figures 1 and 2.

3. ACCURACY ANALYSIS

In this section, the Fourier analysis is used to investigate the accuracy of the SCFDM in
non-uniform grid points. A single Fourier mode,

fj= exp(i!s); s=
xj
hj
; i =

√
−1 (7)

is chosen for the Fourier analysis [5, 10]. As an example, the Fourier analysis is applied to
SCFDM relations by setting N =3, in this case Equations (4) and (5) can be written as
follows:

(��+x + ��
−
x )fj = (�+ ��j)hjf

′
j +

1
2(�− ��2j )h2jf′′

j +
1
6(�+ ��

3
j )h

3
jf

′′′
j

hjf′
j+1 − 2hjf′

j + hjf
′
j−1 = (1− �j)h2jf′′

j +
1
2(1 + �

2
j )h

3
jf

′′′
j

h2jf
′′
j+1 − 2h2jf′′

j + h
2
jf

′′
j−1 = (1− �j)h3jf′′′

j

(8)

By substituting Equation (7) into Equation (8) a complex system of equations is obtained.
By decomposing this complex system to the real and imaginary parts, a system of equations
for the modi�ed wave numbers can be obtained as follows:

(�+ �) sin! = (�+ ��j)!1 − 1
6 (�+ ��

3
j )!3

(�− �)(1− cos!) = 1
2(�− ��2j )!2

2!1(1− cos!) = 1
2(1 + �

2
j )!3

(9)

where !1, !2 and !3 are modi�ed wave numbers of the �rst, second and third derivatives,
respectively. By solving the system of equations (9), the modi�ed wave numbers !1 and !2
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(!3 is not presented here) are obtained as:

!1 =
3(1 + �2j )(�+ �) sin!

3(1 + �2j )(�+ ��j)− 2(1− cos!)(�+ ��3j )

!2 =
2(�− �)(1− cos!)

(�− ��2j )

(10)

It is obvious that !1, !2 and !3 are found implicitly. From Equation (10) it can be easily
seen that the modi�ed wave numbers !1 and !2 do not depend on the parameters � and �,
in uniform grid points (�j=1). This is a general property of the SCFDM. The e�ect of �
and � is investigated in the following section.

3.1. Accuracy analysis of the sixth-order formulation

In this section, the e�ects of aspect ratio, k=1=�j, and free parameters � and �, on the
accuracy of the sixth-order SCFDM relations are investigated. As it was mentioned before,
the modi�ed wave numbers are obtained implicitly. The plots of the modi�ed wave numbers
!1 and !2 for several aspect ratios (�=1, �= ± 1) are presented in Figures 3 and 4. It
can be seen from these �gures that the accuracy begins to change when the aspect ratio k
increases. For k close to one, the accuracy behaves almost like uniform grid. But when k
is far away from one, the accuracy decreases and the method is not as accurate as it was
expected.
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Figure 3. Comparisons of the �rst modi�ed wave number for di�erent values of k (�=1 and �=1).
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Figure 4. Comparisons of the second modi�ed wave number for di�erent values of k (�=1 and �=−1).

To investigate the e�ect of parameters � and �, the plots of the modi�ed wave numbers !1
and !2 are presented in two cases. Figures 5 and 6 show these plots for the case k=1:1. The
results for the case k=1:01 are shown in Figures 7 and 8. It can be seen from these �gures
that by choosing suitable parameters � and �, the accuracy can be improved. Figures 9 and
10 show the e�ect of decreasing the aspect ratio on the accuracy.
Similar investigation is performed for the eighth-order SCFDM. The plots of the modi�ed

wave numbers !1 and !2 for several aspect ratios (�=1, �= ± 1) are presented in Figures
11 and 12. It can be seen from these �gures that the eighth-order SCFDM relations are more
sensitive to the grid aspect ratio respect to the sixth-order relations.
Here, it is interesting to compare the accuracy of the sixth-order super compact method

with the sixth-order traditional method. The sixth-order accurate traditional �nite di�erence
method is expressed as (e.g. Reference [9])

f〈1〉
j = 1

60 [45(fj+1 − fj−1)− 9(fj+2 − fj−2) + (fj+3 − fj−3)] (11)

The Fourier analysis of Equation (11) in uniform grid leads to the following modi�ed wave
number

!1 =
45 sin(!)− 9 sin(2!) + sin(3!)

30
(12)

After the derivation of the sixth-order accurate traditional �nite di�erence method in a non-
uniform grid and by using the Fourier analysis, the corresponding modi�ed wave number will
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Figure 5. Comparisons of the �rst modi�ed wave number for k =1:1 and two
di�erent values �=1; �=1 and �=1; �=0.

ω

ω
2

0 1 2 3
0

1

2

3

4

5

6

7

8

9

10
Exact
α= 1,β= -1
α= 1,β= 0

Figure 6. Comparisons of the second modi�ed wave number for k =1:1 and two
di�erent values �=1; �= − 1 and �=1; �=0.
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Figure 7. Comparisons of the �rst modi�ed wave number for k =1:01 and two
di�erent values �=1; �=1 and �=1; �=0.
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Figure 8. Comparisons of the second modi�ed wave number for k =1:01 and two
di�erent values �=1; �= − 1 and �=1; �=0.
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Figure 9. Comparisons of the �rst modi�ed wave number for �=1; �=1 and
two di�erent values k =1; k =0:95.

be obtained as,

!1 =
90 sin(!)− 18 sin(2!) + 2 sin(3!)

30(1 + �)
(13)

Now it is possible to compare the behaviour of the two schemes in a non-uniform grid.
Figure 13 shows the plots of the modi�ed wave number !1 for the uniform grid (i.e. �=1)
and for a non-uniform grid with aspect ratio k=1=�=1:1. It can be seen that the sixth-
order SCFDM is more accurate than the traditional sixth-order di�erence method and shows
better resolving property in the uniform grid. Both of the schemes are not e�cient in a non-
uniform grid but it seems that the sixth-order super compact method is more sensitive to the
aspect ratio compared to the traditional sixth-order �nite di�erence method for the large wave
numbers.

4. THE MODIFIED EQUATION APPROACH

The results of the Fourier analysis obtained in the previous section lead to a visual rep-
resentation of the error of the SCFDM in non-uniform grids. For the sake of obtaining a
mathematical representation of the error and the role of the aspect ratio in the accuracy of
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Figure 10. Comparisons of the Second modi�ed wave number for �=1; �=−1
and two di�erent values k =1; 0:95.

the method in non-uniform grids, the modi�ed equation approach [11, 12] is used to derive
the modi�ed equation for 1-D linear advection equation,

@u
@t
+ c

@u
@x
=0 (14)

where c is a constant. A forward temporal di�erencing is used to discretize the equation as
below:

un+1j − unj
�t

+ c
(
@u
@x

)
j
=0 (15)

in which n and j are the indices for time and space, respectively. To discretize the spatial
derivative of the above equation using the sixth-order super compact formulation, �rst it is
necessary to obtain an alternative form of the SCFDM relations which is introduced here
for the �rst time. By using the forward and backward operators which were de�ned at the
previous sections, the left-hand side of Equation (6) can be written as,

−1
2
L

(
1
�j

)
Fj−1 + (A+ L)Fj − 1

2
L(�j+1)Fj+1

=
[
1
2
(−L2�+ + L3�− − L2 − L3) +A+ L1

]
Fj
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Figure 11. Comparisons of the �rst modi�ed wave number for di�erent values of k (�=1 and �=1).
For the eighth-order SCFDM relations.

where

L1 =L(1); L2 =L(�j+1); L3 =L
(
1
�j

)

substitution of the above equation into Equation (6) leads to the following equation:

[ 12 (−L2�+ + L3�− − L2 − L3) +A+ L1]Fj= 1
2(��

+
x + ��

−
x )fjE (16)

and the approximation of the di�erent derivatives can be obtained as follows:

Fj= {Q−1 1
2 (��

+
x + ��

−
x )}fjE (17)

in which

Q=[12(−L2�+ + L3�− − L2 − L3) +A+ L1]

4.1. Alternative form of the sixth-order formulation

It is assumed that �=�=1 and the variable, �j, is considered to be constant equal to �.
After bypassing some manipulations, the approximation of the �rst derivative represented by
the sixth-order formulation becomes:

f〈1〉
j =

P1
P2
�◦

2
fj (18)
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Figure 12. Comparisons of the second modi�ed wave number for di�erent values of k (�=1 and
�= − 1). For the eighth-order SCFDM relations.

where �◦= �+ + �− and the spatial operators P1 and P2 are complicate functions in the
following forms:

P1 =P1(�; �−; �+; �−2; �+2; �−3; �+3; �−�+; �−2�+; �−�+2)

P2 =P2(�; �−; �+; �−2; �+2; �−3; �+3; �−4; �+4; �−�+; �−2�+;

�−�+2; �−3�+; �−�+3; �−2�+2)

which are not presented here.

4.1.1. Modi�ed equation. Equation (18) is used to discretize the spatial derivative of
Equation (15)

P2un+1j − P2unj = �P1�◦unj (19)

where �= − c�t=2hj. After the application of the operators P1, P2 and �◦ and using the
Taylor series and following the procedure of the derivation of the modi�ed equation [12], the
resulting modi�ed equation will be:

ut + cux = �1(�)ux + �2(�)uxx + �3(�)uxxx + �4(�)uxxxx

+�5(�)uxxxxx + �6(�)uxxxxxx + �7(�)uxxxxxxx + · · · (20)
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Figure 13. Comparisons of the �rst modi�ed wave number for the sixth-order SCFDM and traditional
sixth-order di�erence methods in uniform and non-uniform grids.

where the subscripts x and t denote the derivative. Coe�cients �1 to �7 are very complicated
functions of �, hj, hj−1, c and �t and here the simplest one i.e. �1 is presented:

�1 = − ca
2
(�+ 1) + c

where a is a function of � i.e. a= a(�). In a uniform grid where �=1, the functions �1
to �6 are independent of � (as it can be seen for �1 where a(1)=1) and the method is
exactly sixth-order. But in the non-uniform grid all of the coe�cients �1 to �6 have values
depending on the �. This fact shows the dependency of the error on the aspect ratio and
clari�es the crucial role of the aspect ratio in the accuracy of the SCFDM in non-uniform
grids. To demonstrate the behaviour of the coe�cients of the modi�ed equation, the value of
�1 (for instance) at di�erent aspect ratios is summarized at Table I. This table shows that in
the non-uniform grids, when the aspect ratio is not close to one, the method is not as accurate
as it was expected and even it can behave like a �rst-order scheme.
In the following sections, the solution of the Blasius boundary layer and non-linear parab-

olized stability equations (PSE) as examples which require non-uniform grid spacing are
presented. The sixth-order super compact formulation in non-uniform grid is used to solve
these equations and to investigate the e�ect of non-uniform grid on numerical
accuracy.
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Table I. The values of �1 for di�erent aspect ratios.

� Aspect ratio k =1=� a(�) �1(�)=c

1.00 1.00 1.00 0.0
0.99 1.01 1.00495 2:50×10−5

0.95 1.05 1.02376 6:15×10−4

0.91 1.10 1.04515 2:36×10−3

0.87 1.15 1.06434 5:07×10−3

0.83 1.20 1.08148 8:64×10−3

5. BLASIUS BOUNDARY LAYER

In this section, the solution of the Blasius boundary layer using the sixth-order super compact
formulation in a non-uniform grid spacing is presented. By de�ning the dimensionless simi-
larity variables for laminar boundary layer �ow over a �at plate a di�erential equation (the
Blasius equation) is obtained [13]:

F ′′′ + 1
2FF

′′=0 (21)

with boundary conditions:

F(0)=F ′(0)=0; F ′(∞)=1
where F(�) is the Blasius function de�ned as:

�=
√
�U∞xF(�); �=y

√
U∞
�x

and � is the stream function. We applied the sixth-order SCFDM to solve this equation for
the di�erent aspect ratios. The sixth-order SCFDM formulation for each variable has four
relations, one of them is the basic equation and the others are auxiliary equations. In these set
of equations there are �ve unknowns {f;f′; f′′; f′′′; f′′′′}T where (′) denotes the derivative.
The governing equation is needed to close the system and a block tridiagonal system is
obtained with a block size 5×5.
Table II shows the results of numerical solution for F ′′(0). Also a comparison is made

between the results of the SCFDM and those obtained from the application of the spectral
method [14]. This table also shows the number of grid points in the non-uniform grid system
with �max =12 and the number of grid points are chosen such that the grid spacing for the �rst
grid is h1 = �2 − �1 ≈ 0:01. This choice allows us to have enough grid points in the boundary
layer to obtain an accurate result. In addition, in this table the results of the SCFDM are
presented for a grid distribution similar to the grid used for the spectral method.
Important role of the aspect ratio in the behaviour of the super compact scheme in non-

uniform grid is illustrated by computing the error of this scheme based on spectral method.
This error is shown in Table II. It can be seen that the aspect ratios which are larger than
a certain limit (e.g. for sixth-order case k=1:2) generate numerical errors which are not
acceptable.
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Table II. Comparison of the results of the sixth-order SCFDM for the
Blasius equation for the di�erent aspect ratios in a non-uniform grid.

Method F ′′(0) Number of grids Error (%)

SCFDM k =1:00 0:332057 1201 ∼ 0
SCFDM k =1:01 0:332057 250 ∼ 0
SCFDM k =1:05 0:332057 85 ∼ 0
SCFDM k =1:10 0:332057 51 ∼ 0
SCFDM k =1:15 0:332056 37 3×10−4

SCFDM k =1:20 0:332054 31 9×10−4

SCFDM k =1:50 0:331696 16 0:1
SCFDM (spectral grid) 0:332057 76 —
Spectral method 0:332057 31 —

6. PARABOLIZED STABILITY EQUATIONS

The PSE are an initial-boundary value problem and they can be solved using a marching
procedure. As a result, the computational e�ort and required storage can be reduced using
the PSE. Therefore, these equations are appropriate for a rapid and an accurate prediction
of laminar-turbulent transition of incompressible boundary layers (more details are given in
Reference [15]).

6.1. Problem formulation

In this subsection, the stability of incompressible �ow over a �at plate in Cartesian co-
ordinate system is formulated. The Cartesian co-ordinates are denoted by x, y, and z, where
x is the streamwise distance from the leading edge, and y and z are the plate normal and
the spanwise co-ordinates, respectively. All quantities are non-dimensionalized with the free
stream velocity U∞ and the �xed length �◦= �(x◦)=

√
�x◦=U∞, where x◦ is a �xed starting

dimensional distance from the leading edge and � is kinematic viscosity. The resulting non-
dimensional parameter is the reference Reynolds number R◦=U∞�◦=� at x= x◦. Then, the
three dimensional incompressible Navier–Stokes equations in non-dimensional form are as
follows:

∇ · V =0 (22)

@V
@t
+ (V · ∇)V =−∇p+ 1

R◦
∇2V (23)

where V =(u; v; w) is the velocity vector and p is the pressure.
To obtain the disturbance equations, one can split the dependent quantities vector �=

(u; v; w; p)T into a steady two-dimensional mean value (basic �ow) �b=(Ub; Vb; 0; Pb)T and
an unsteady three-dimensional perturbation quantity �′=(u′; v′; w′; p′)T i.e.

�(x; y; z; t)=�b(x; y) + �′(x; y; z; t) (24)

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:485–505



ACCURACY ANALYSIS OF SUPER COMPACT SCHEME IN NON-UNIFORM GRID 501

By substituting the vector � into the Navier–Stokes equations (22) and (23), and subtract-
ing the terms satis�ed by the basic �ow, one will obtain the governing equations for the
disturbances �′, which will not be presented here.
For �ow over the �at plate the basic �ow can be obtained by solving the self-similar

boundary layer equations (the Blasius equation).

6.2. Non-linear PSE

For non-linear waves, the total disturbance is assumed to be periodic in time and in the
spanwise direction. For most problems, it is su�cient to choose a �nite number of modes.
In these cases, the total disturbance vector �′(x; y; z; t) can be expressed as follows:

�′=
N∑

n=−N

K∑
m=−K

�̂nm(x; y)	nm(x; z; t) (25)

where the shape function vector �̂nm and 	nm are:

�̂nm = (ûnm; v̂nm; ŵnm; p̂nm)
T

	nm = exp
[
i
(∫ x

x◦
�nm(s) ds+m�̃z − n!̃t

)]

The non-linear PSE are obtained by substituting the disturbance vector �′ into the non-
linear disturbance equations and performing harmonic balance for both linear and non-linear
terms. Finally, the non-linear PSE equations can be obtained for the shape function �̂nm of a
single Fourier mode (n;m), that can be written as a system of di�erential equations in terms
of stability variables q̂nm as follows:

L(�nm)[q̂nm] +M(�nm)
[
@q̂nm
@x

]
=Hnm (26)

where

q̂=(û; v̂; ŵ; p̂)T

and Hnm is non-linear forcing function.
The PSE equations need appropriate boundary conditions in the y direction. At the wall,

the components of the perturbation velocity satisfy the no-slip condition

û= v̂= ŵ=0; y=0 (27)

and the Dirichlet conditions are applied in the free-stream,

û= v̂= ŵ=0; y → ∞ (28)

6.3. Numerical solution

The sixth-order SCFDM formulation for non-uniform grid points is used to compute the basic
�ow and the PSE equations. Numerical solution of PSE equations needs to discretize equation
(26) in both streamwise (x) and wall normal (y) directions. In the streamwise direction, the
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�rst-order backward di�erence schemes is used. In the wall normal direction, the sixth-order
SCFDM is employed. By using the sixth-order SCFDM formulation in y direction for each
unknown, 20 equations are obtained (16 relations for SCFDM and four relations are governing
equations).
These equations require 20 boundary conditions. Equations (27) and (28) provide six bound-

ary conditions. An additional boundary condition is obtained using the derivative of continuity
equation at the wall. Other boundary conditions are obtained as a part of solution, by using
forward and backward SCFDM relations at boundaries. The above system of equations along
with the 20 boundary conditions give a block tridiagonal system of equations with a block
size of 20×20.

6.4. Initial conditions

The initial conditions for the PSE computation are obtained by solving the Orr–Sommerfeld
equations at the corresponding Reynolds number R◦ and non-dimensional frequency F
(!�=U 2

∞×106). The Orr–Sommerfeld equations in primitive forms can be obtained from the
linear PSE equations by setting @=@x derivatives and Vb equal to zero and can also be solved
using the super compact method.

6.5. Results and discussion

All calculations initiated at R◦=400 where the shape function and corresponding wave number
for the TS wave are provided by the Orr–Sommerfeld solutions.

6.5.1. 3-D non-linear PSE. There are di�erent routes to transition depending on the
initial conditions. The most dangerous route is expected to be a three-dimensional subhar-
monic mode interaction. A non-linear interaction is considered between a TS fundamental
wave (mode (2; 0)) 2F =124 and a pair of subharmonic oblique waves ((1; 1) and (1;−1)
modes) for conditions of Kachanov and Levchenko’s [16] experiment. The initial amplitudes
of the TS wave and the subharmonic wave are chosen A◦

2;0 = 0:46% and A◦
1;1 = 0:01% based on

u′
max, respectively. The spanwise wave number of the subharmonic mode is �xed at �̃=0:14.
The stepsize for the marching procedure is �x=15. The solution is obtained with Fourier
series truncated to N =2, and K =1, and extended from Re=400 to Re=720. Figure 14
shows the PSE results for the amplitudes of three modes (0; 0), (1; 1) and (2; 0) based on
u′
max together with experimental data for H-type breakdown. Amplitudes were measured at
�=1:3. This �gure indicates that the results of the SCFDM agree well with those of the
fourth-order compact [17] (not shown here) and experimental data, when k=1:01 is used.
For k=1:15, a numerical error is generated from the �rst steps of computation as shown
in the �gure. Because of these errors the code dose not converge at Re=680 and breaks
down. The velocity pro�les of u′ for mode (1; 1) at Re=608 for A01;1 = 0:01% is shown in
Figure 15. When k=1:01, results show better agreement with experimental data and DNS
results computed by Fasel et al. [18]. The di�erences between the PSE and the experimental
results for this mode (subharmonic) may come from the initial conditions which are provided
by the Orr–Sommerfeld equations. Figure 16 presents the variations of non-dimensional skin
friction coe�cient versus Reynolds number for the subharmonic breakdown. The �gure also
shows the comparison of the results with those obtained by the fourth-order compact method
[17] to indicate the accuracy of the computation. As it can be seen for k=1:15 used in the
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SCFDM, the numerical errors initiated from the �rst steps of computation, a�ect the rise of
the skin friction coe�cient.

7. CONCLUSIONS

The accuracy of the super compact �nite di�erence method (SCFDM) in non-uniform grid
points has been studied. The Fourier analysis and the modi�ed equation approach are used to
investigate the accuracy. The Fourier analysis gives a visual representation of the error of the
SCFDM in non-uniform grid introduced at di�erent aspect ratios respect to the uniform grid.
Further, the modi�ed equation approach leads to a mathematical representation of the error
and clari�es the role of the aspect ratio in the accuracy. These results show that by choosing
the aspect ratio close to one, the accuracy of the SCFDM is almost like uniform grid. The
sixth-order super compact relations in non-uniform grid are used to solve the Blasius equation.
The results show that di�erent aspect ratios up to a certain limit are acceptable to have an
accurate solution. In addition, the sixth-order super compact relations in the non-uniform
grid are applied to solve parabolized stability equations (PSE) which are more sensitive to
numerical accuracy. For the PSE equations it was found that there are more limitation to the
aspect ratio than the case of Blasius equation for accurate solution and the aspect ratio must
be chosen very close to one.
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